Explanation of the self-adaptive dynamics of a harmonically forced beam with a sliding mass

Author:

Müller FlorianORCID,Krack Malte

Abstract

AbstractThe self-adaptive behavior of a clamped–clamped beam with an attached slider has been experimentally demonstrated by several research groups. In a wide range of excitation frequencies, the system shows its signature move: The slider first slowly moves away from the beam’s center, at a certain point the vibrations jump to a high level, then the slider slowly moves back toward the center and stops at some point, while the system further increases its high vibration level. In our previous work, we explained the unexpected movement of the slider away from the beam’s vibration antinode at the center by the unilateral and frictional contact interactions permitted via a small clearance between slider and beam. However, this model did not predict the signature move correctly. In simulations, the vibration level did not increase significantly and the slider did not turn around. In the present work, we explain, for the first time, the complete signature move. We show that the timescales of vibration and slider movement along the beam are well separated, such that the adaptive system closely follows the periodic vibration response obtained for axially fixed slider. We demonstrate that the beam’s geometric stiffening nonlinearity, which we neglected in our previous work, is of utmost importance for the vibration levels encountered in the experiments. This stiffening nonlinearity leads to coexisting periodic vibration responses and to a turning point bifurcation with respect to the slider position. We associate the experimentally observed jump phenomenon to this turning point and explain why the slider moves back toward the center and stops at some point.

Funder

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3