Elastic spherical inhomogeneity in an infinite elastic solid: an exact analysis by an engineering treatment of the problem based on the corresponding cavity solution

Author:

Amstutz Hans,Vormwald MichaelORCID

Abstract

AbstractIn the present work, solutions are recapitulated according to the theory of elasticity for the deformations of an adhesive spherical inhomogeneity in an infinite matrix under remote uniform axial and axial-symmetrical radial tension. Stress fields in the inhomogeneity and at the interface in the matrix are provided, too. It is shown that the sphere is deformed to a spheroid under any of the loading cases considered. Due to the axial-symmetric setup of the problem, the deformation is fully described by the two displacement values at line segments on the principal axes of the spheroid. The displacements depend on the applied remote load and on two traction fields at the inhomogeneity-matrix interface. For any combination of inhomogeneity and matrix stiffness, the condition of compatibility of deformations yields a system of two linear equations with the two magnitudes of the tractions as unknowns. Thus, the problem is reduced to a formulation for solving a twofold statically indetermined structure. The system is solved and the exact solution of the general spherical inhomogeneity problem with differing stiffness in terms of Young’s moduli and Poisson’s ratios of inclusion and matrix is presented.

Funder

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

Reference16 articles.

1. Goodier, J.N.: Concentration of stress around spherical and cylindrical inclusions and flaws. J. Appl. Mech. Trans. ASME 55, A-39 (1933)

2. Edwards, R.H.: Stress concentration around spheroidal inclutions and cavities. J. Appl. Mech. Trans. ASME 18, 19 (1951)

3. Sadowsky, M.A., Sternberg, E.: Stress concentration around an elllipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of the cavity. J. Appl. Mech. Trans. ASME 69, A-191 (1947)

4. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusions and related problems. Proc. R. Soc. Ser. A 241, 376–396 (1957)

5. Amstutz, H.: Elastizitätstheoretische Lösung des kreisförmigen Einschlusses in unendlicher Scheibe mittels der Beziehungen zwischen Loch- und Einschlussproblem. Mater. Sci. Eng. Technol. 44(11), 903–913 (2013)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3