Author:
Mohamed Rasha M. S. M.,Ahmad Enssaf Ahmad,Omran Bothina H. F.,Sakr Amr T.,Ibrahim Islam A. A. E.-H.,Mahmoud Mona F.,El-Naggar Mostafa E.
Abstract
AbstractThe current study aimed to investigate the cardiotoxic effect of dexamethasone-high-dose in rats, the therapeutic effect of carvedilol and the role of α1-adrenergic receptor (α1AR). The experiment involved 6 groups: control, dexamethasone (10 mg/kg), carvedilol (10 mg/kg), phenylephrine (1 mg/kg), phenylephrine plus carvedilol and propranolol (30 mg/kg). Drugs and vehicles were given for 7 days. Dexamethasone was given with the drugs in the last 4 groups. On the 8th-day and after overnight fasting, serum and cardiac samples were collected. Serum levels of cardiac troponin I and creatine kinase–myoglobin as well as cardiac levels of diacylglycerol, malondialdehyde, kinase activity of Akt, transforming growth factor-β, Smad3 and alpha smooth muscle actin were measured. Cardiac samples were also used for histopathological examination using hematoxylin–eosin and Sirius red stains, in addition to immunohistochemical examination using β-arrestin2 antibody. Dexamethasone induced cardiac injury via increasing oxidative stress, apoptosis and profibrotic signals. Carvedilol significantly reduced the dexamethasone-induced cardiotoxicity. Using phenylephrine, a competitive α1-agonist, with carvedilol potentiated the cardioprotective actions of carvedilol. Propranolol, a β-blocker without activity on α1ARs, showed higher cardiac protection than carvedilol. Dexamethasone-high-dose upregulates cardiac oxidative stress, apoptotic and profibrotic signals and induces cardiac injury. Blocking the α1-adrenergic receptor by carvedilol attenuates its cardioprotective effects against dexamethasone-induced cardiotoxicity.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献