Gemcitabine-loaded chitosan nanoparticles enhanced apoptotic and ferroptotic response of gemcitabine treatment alone in the pancreatic cancer cells in vitro

Author:

Aydemir DuyguORCID,Öztürk Kıvılcım,Arslan Fatma Betül,Çalis Sema,Ulusu Nuriye NurayORCID

Abstract

AbstractGemcitabine (GEM) is a first-line treatment for pancreatic ductal adenocarcinoma (PDAC) patients, causing side effects and poor overall survival. Eighty percent of patients often develop resistance rapidly to GEM. Developing therapeutic approaches and increasing sensitivity to gemcitabine in PDAC has become one of the challenges in cancer research. We synthesized GEM-loaded NPs prepared with a method that combines ultrasonication and ionotropic gelation to overcome GEM-related limitations in PDAC. CFPAC-1 cells were treated with increased concentrations of GEM, empty chitosan, and GEM-loaded NPs (0.66, 1.32, 2.64, 5.32 µg/ml) for up to 48 h. Empty chitosan NPs did not show toxicity on L929 cells. Antioxidant enzyme activities, including glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione s-transferase (GST), and glutathione peroxidase (GPx), significantly reduced in GEM-loaded NPs compared to the GEM associated with increased oxidative stress, PPP, and glycolysis. Bcl-xL, NOXA/mcl-1, and Ca2+ levels significantly increased in GEM-loaded NP-administered cells compared to the GEM and control groups. In contrast, JNK, p38, STAT3, Akt, and CREB levels significantly decreased in the GEM-loaded NP group, addressing enhanced apoptotic response compared to the GEM alone. Increased ferroptosis activity in GEM-loaded NP-administered groups has been validated via decreased antioxidant enzyme activities, increased cytosolic Fe, Zn, Mg, and Mn levels, and reduced GPx activity compared to the GEM and control groups. For the first time in the literature, we showed biocompatible GEM-loaded NPs enhanced apoptotic and ferroptotic response in CFPAC-1 cells via downregulation of antioxidant, glycolysis, and PPP metabolism compared to the GEM alone. Graphical abstract

Funder

Koc University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3