Sildenafil and furosemide nanoparticles as a novel pharmacological treatment for acute renal failure in rats

Author:

Sabra Mahmoud S.,Allam Essmat A. H.,Hassanein Khaled M. Ahmed

Abstract

AbstractHospitalized patients often develop acute renal failure (ARF), which causes severe morbidity and death. This research investigates the potential renoprotective benefits of sildenafil and furosemide in glycerol-induced ARF, and measures kidney function metrics in response to nanoparticle versions of these medications. Inducing ARF is commonly done by injecting 50% glycerol intramuscularly. Rats underwent a 24-h period of dehydration and starvation before slaughter for renal function testing. We investigated urine analysis, markers of oxidative stress, histology of kidney tissue, immunohistochemistry analysis of caspase-3 and interleukin-1 beta (IL-1 β), kidney injury molecule-1 (KIM-1), and neutrophil gelatinase–associated lipocalin (NGAL), which are specific indicators of kidney tissue damage. The results of our study showed that the combination of sildenafil and furosemide, using both traditional and nanoparticle formulations, had a greater protective effect on the kidneys compared to using either drug alone. The recovery of renal tissue indicators, serum markers, and urine markers, which are indicative of organ damage, provides evidence of improvement. This was also indicated by the reduction in KIM-1 and NGAL tubular expression. The immunohistochemistry tests showed that the combination therapy, especially with the nanoforms, greatly improved the damaged cellular changes in the kidneys, as shown by higher levels of caspase-3 and IL-1β. According to the findings, a glycerol-induced rat model demonstrates that sildenafil and furosemide, either alone or in combination, in conventional or nanoparticulate forms, improve ARF dysfunction. The synergistic nanoparticulate compositions show remarkable effectiveness. This observation highlights the possible therapeutic implications for ARF treatment.

Funder

Assiut University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3