Role of curcumin on beta-amyloid protein, tau protein, and biochemical and oxidative changes in streptozotocin-induced diabetic rats

Author:

Ermiş Mustafa,Çiftci Gülay

Abstract

AbstractDiabetes is one of the most common endocrine metabolic diseases and is associated with the accumulation of beta-amyloid plaques in the brain. Amyloid beta (Aβ) and abnormal tau proteins are effective in the development of Alzheimer’s disease. The aim of this study is to investigate the therapeutic and protective effects of curcumin on beta-amyloid (Aβ) accumulation and tau protein expression levels, as well as biochemical and oxidative changes in streptozotocin-induced diabetes in rats. The study comprised five groups, each consisting of eight rats: control, diabetic, curcumin, curcumin during diabetic induction, and curcumin post-diabetic induction. Groups 2 and 4 were administered a single dose of 45 mg/kg streptozotocin on day 1, while group 5 received it on day 28. Curcumin was orally administered via gavage at a dose of 100 mg/kg/day for 35 days to the third, fourth, and fifth groups. At the end of the trial (day 35), blood sugar levels and insulin resistance were similar between the control and curcumin-treated groups but significantly higher in the diabetic groups (P < 0.05). The protective effect of curcumin is tested during induction and active diabetes. The results indicated that diabetic rats displayed increased levels of Aβ, tau protein, and total oxidant capacity (TOS) compared to the curcumin-treated groups. Additionally, the total antioxidant capacity (TAS) levels were lower in the diabetic rats (P < 0.05). Aβ protein levels are lower in both the serum and brain of rats with active diabetes and treated with curcumin compared to control rats (P > 0.05). In addition, serum TAS levels were higher in rats treated with curcumin following the induction of diabetes than pre-induction of diabetes (P > 0.05). The TOS levels in the serum were higher in the rats treated with curcumin during active diabetes compared to the rats treated prior to the induction of diabetes (P < 0.05). However, no significant difference was observed in the brain. The above results show that curcumin has an effect on reducing oxidative stress caused by diabetes and increasing antioxidant activity.

Funder

Ondokuz Mayis Üniversitesi

Ondokuz Mayıs University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3