Abstract
AbstractNon-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, and liver fibrosis is the strongest predictor of morbimortality. We aimed to assess the performance of a sequential algorithm encompassing the Fibrosis 4 (FIB-4) and Enhanced Liver Fibrosis (ELF) scores for identifying patients at risk of advanced fibrosis. This cross-sectional study included one hospital-based cohort with biopsy-proven NAFLD (n = 140) and two primary care cohorts from different clinical settings: Type 2 Diabetes (T2D) follow-up (n = 141) and chronic liver disease (CLD) initial study (n = 138). Logistic regression analysis was performed to assess liver fibrosis diagnosis models based on FIB-4 and ELF biomarkers. The sequential algorithm retrieved the following accuracy parameters in predicting stages F3–4 in the biopsy-confirmed cohort: sensitivity (85%), specificity (73%), negative predictive value (79%) and positive predictive value (81%). In both T2D and CLD cohorts, a total of 28% of patients were classified as stages F3–4. Furthermore, of all F3–4 classified patients in the T2D cohort, 80% had a diagnosis of liver disease and 44% were referred to secondary care. Likewise, of all F3–4 classified patients in the CLD cohort, 71% had a diagnosis of liver disease and 44% were referred to secondary care. These results suggest the potential utility of this algorithm as a liver fibrosis stratifying tool in primary care, where updating referral protocols to detect high-risk F3–4 is needed. FIB-4 and ELF sequential measurement is an efficient strategy to prioritize patients with high risk of F3–4 in populations with metabolic risk factors.
Publisher
Springer Science and Business Media LLC
Subject
Emergency Medicine,Internal Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献