Machine learning to predict in-hospital cardiac arrest from patients presenting to the emergency department

Author:

Lu Tsung-Chien,Wang Chih-Hung,Chou Fan-Ya,Sun Jen-Tang,Chou Eric H.,Huang Edward Pei-Chuan,Tsai Chu-LinORCID,Ma Matthew Huei-Ming,Fang Cheng-Chung,Huang Chien-Hua

Funder

Ministry of Science and Technology, Taiwan

National Taiwan University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Emergency Medicine,Internal Medicine

Reference40 articles.

1. Andersen LW, Holmberg MJ, Berg KM, Donnino MW, Granfeldt A (2019) In-hospital cardiac arrest: a review. JAMA 321(12):1200–1210. https://doi.org/10.1001/jama.2019.1696

2. Cummins RO, Chamberlain D, Hazinski MF, Nadkarni V, Kloeck W, Kramer E, Becker L et al (1997) Recommended guidelines for reviewing, reporting, and conducting research on in-hospital resuscitation: the in-hospital “Utstein style’. Am Heart Assoc Ann Emerg Med 29:650–679. https://doi.org/10.1016/s0196-0644(97)70256-7

3. Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L et al (2004) Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation 110:3385–3397. https://doi.org/10.1161/01.CIR.0000147236.85306.15

4. Yan S, Gan Y, Jiang N, Wang R, Chen Y, Luo Z et al (2020) The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit Care 24:61. https://doi.org/10.1186/s13054-020-2773-2

5. Kumar G, Nanchal R (2013) Trends in survival after in-hospital cardiac arrest. N Engl J Med 14(368):680. https://doi.org/10.1056/NEJMc1215155

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3