1. S. D. HAITUN, Stationary, scientometric distributions. Part I. The different approximations —Scientometrics, 4 (1982) No. 1; Part II. Non-Gaussian nature of scientific activities. —Scientometrics, 4 (1982) No. 2.
2. The definition of latent and indicator parameters see, for example: S. D. HAITUN, Scientometric investigations in the USSR.Scientometrics, 2 (1980) 65–84.
3. For example, see: O. U. GROOS. Bradford's law and the Keenan-Atherton data,American Documentation, 19 (1967) 46.
4. See: D. H. LEAVENS, Communication from Dikson H. Leavens,Econometrics, 21 (1959) 630; D. J. de S. PRICE,Little Science, Big Science. Columbia Univ. Press, N. Y.-L., 1963; R. MITTERMERR, K. D. KNORR, Scientific productivity and accumulative advantage: a thesis reassessed in the light of international data,R & D Management, 9 (1979) 235–239.
5. B. MANDELBROT, Contribution a la theorie mathematique des jeux de communication. Ph. D. Thesis, Paris, Dec. 16, 1952, Publ. de l'Inst. de Statistique de l'Univ. de Paris, Vol. 2, No. 1, 2, p. 80–102, 1953.