Author:
Ghazouani Selim,Ulcigrai Corinna
Abstract
AbstractWe prove a rigidity result for foliations on surfaces of genus two, which can be seen as a generalization to higher genus of Herman’s theorem on circle diffeomorphisms and, correspondingly, flows on the torus. We prove in particular that, if a smooth, orientable foliation with non-degenerate (Morse) singularities on a closed surface of genus two is minimal, then, under a full measure condition for the rotation number, it is differentiably conjugate to a linear foliation.The corresponding result at the level of Poincaré sections is that, for a full measure set of (standard) interval exchange transformations (IETs for short) with $d=4$
d
=
4
or $d=5$
d
=
5
continuity intervals and irreducible combinatorics, any generalized interval exchange transformation (GIET for short) which is topologically conjugate to a standard IET from this set and satisfies an obstruction expressed in terms of boundary operator (which is automatically satisfied when the GIET arises as a Poincaré map of a smooth foliation) is $\mathcal{C}^{1}$
C
1
-conjugate to it. This in particular settles a conjecture by Marmi, Moussa and Yoccoz in genus two. Our results also show that this conjecture on the rigidity of GIETs can be reduced to the study of affine IETs, or more precisely of Birkhoff sums of piecewise constant observables over standard IETs, in genus $g \geq 3$
g
≥
3
.Our approach is via renormalization, namely we exploit a suitable acceleration of the Rauzy-Veech induction (an acceleration which makes Oseledets generic effective) on the space of GIETs. For in ly renormalizable, irrational GIETs of any number of intervals $d\geq 2$
d
≥
2
we prove a dynamical dichotomy on the behaviour of the orbits under renormalization, by proving that either an orbit is recurrent to certain bounded sets in the space of GIETs, or it diverges and it is approximated (up to lower order terms) by the orbit of an affine IET (a case that we refer to as affine shadowing). This result can in particular be used, in conjunction with previous work by Marmi-Moussa and Yoccoz on the existence of wandering intervals for affine IETs, to prove, a priori bounds in genus two and is therefore at the base of the rigidity result.
Publisher
Springer Science and Business Media LLC
Reference82 articles.
1. V. I. Arnol’d, Small denominators. I. Mapping the circle onto itself, Izv. Akad. Nauk SSSR, Ser. Mat., 25 (1961), 21–86.
2. P. Arnoux, Échanges d’intervalles et flots sur les surfaces, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (French), 1981, pp. 5–38.
3. A. Avila and A. Bufetov, Exponential decay of correlations for the Rauzy-Veech-Zorich induction map, Partially hyperbolic dynamics, laminations, and Teichmüller flow, 2007, pp. 203–211.
4. A. Avila and G. Forni, Weak mixing for interval exchange transformations and translation flows, Ann. Math. (2), 165 (2007), 637–664.
5. A. Avila and M. Lyubich, The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes, Publ. Math. Inst. Hautes Études Sci., 114 (2011), 171–223.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献