A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two

Author:

Ghazouani Selim,Ulcigrai Corinna

Abstract

AbstractWe prove a rigidity result for foliations on surfaces of genus two, which can be seen as a generalization to higher genus of Herman’s theorem on circle diffeomorphisms and, correspondingly, flows on the torus. We prove in particular that, if a smooth, orientable foliation with non-degenerate (Morse) singularities on a closed surface of genus two is minimal, then, under a full measure condition for the rotation number, it is differentiably conjugate to a linear foliation.The corresponding result at the level of Poincaré sections is that, for a full measure set of (standard) interval exchange transformations (IETs for short) with $d=4$ d = 4 or $d=5$ d = 5 continuity intervals and irreducible combinatorics, any generalized interval exchange transformation (GIET for short) which is topologically conjugate to a standard IET from this set and satisfies an obstruction expressed in terms of boundary operator (which is automatically satisfied when the GIET arises as a Poincaré map of a smooth foliation) is $\mathcal{C}^{1}$ C 1 -conjugate to it. This in particular settles a conjecture by Marmi, Moussa and Yoccoz in genus two. Our results also show that this conjecture on the rigidity of GIETs can be reduced to the study of affine IETs, or more precisely of Birkhoff sums of piecewise constant observables over standard IETs, in genus $g \geq 3$ g 3 .Our approach is via renormalization, namely we exploit a suitable acceleration of the Rauzy-Veech induction (an acceleration which makes Oseledets generic effective) on the space of GIETs. For in ly renormalizable, irrational GIETs of any number of intervals $d\geq 2$ d 2 we prove a dynamical dichotomy on the behaviour of the orbits under renormalization, by proving that either an orbit is recurrent to certain bounded sets in the space of GIETs, or it diverges and it is approximated (up to lower order terms) by the orbit of an affine IET (a case that we refer to as affine shadowing). This result can in particular be used, in conjunction with previous work by Marmi-Moussa and Yoccoz on the existence of wandering intervals for affine IETs, to prove, a priori bounds in genus two and is therefore at the base of the rigidity result.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Hausdorff dimension of invariant measures of piecewise smooth circle homeomorphisms;Ergodic Theory and Dynamical Systems;2024-04-11

2. Rigidity for piecewise smooth circle homeomorphisms and certain GIETs;Advances in Mathematics;2024-04

3. New phenomena in deviation of Birkhoff integrals for locally Hamiltonian flows;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3