Langevin dynamic for the 2D Yang–Mills measure

Author:

Chandra Ajay,Chevyrev Ilya,Hairer Martin,Shen Hao

Abstract

AbstractWe define a natural state space and Markov process associated to the stochastic Yang–Mills heat flow in two dimensions.To accomplish this we first introduce a space of distributional connections for which holonomies along sufficiently regular curves (Wilson loop observables) and the action of an associated group of gauge transformations are both well-defined and satisfy good continuity properties. The desired state space is obtained as the corresponding space of orbits under this group action and is shown to be a Polish space when equipped with a natural Hausdorff metric.To construct the Markov process we show that the stochastic Yang–Mills heat flow takes values in our space of connections and use the “DeTurck trick” of introducing a time dependent gauge transformation to show invariance, in law, of the solution under gauge transformations.Our main tool for solving for the Yang–Mills heat flow is the theory of regularity structures and along the way we also develop a “basis-free” framework for applying the theory of regularity structures in the context of vector-valued noise – this provides a conceptual framework for interpreting several previous constructions and we expect this framework to be of independent interest.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lyapunov exponents and synchronisation by noise for systems of SPDEs;The Annals of Probability;2024-09-01

2. Gauge Field Marginal of an Abelian Higgs Model;Communications in Mathematical Physics;2024-05-28

3. Holonomy of the Planar Brownian Motion in a Poisson Punctured Plane;Communications in Mathematical Physics;2024-05-27

4. Stochastic quantisation of Yang–Mills–Higgs in 3D;Inventiones mathematicae;2024-05-22

5. Invariant Gibbs measures for the three dimensional cubic nonlinear wave equation;Inventiones mathematicae;2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3