Author:
Newton James,Thorne Jack A.
Abstract
AbstractLet $f$
f
be a cuspidal Hecke eigenform without complex multiplication. We prove the automorphy of the symmetric power lifting $\operatorname{Sym}^{n} f$
Sym
n
f
for every $n \geq 1$
n
≥
1
.
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. P. B. Allen, J. Newton and J. A. Thorne, Automorphy lifting for residually reducible $l$-adic Galois representations, II, Compos. Math., 156 (2020), 2399–2422.
2. Lecture Notes in Mathematics;P. Berthelot,1982
3. J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups, Astérisque, 324 (2009), xii+314.
4. C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over $\mathbf{Q}$: wild 3-adic exercises, J. Am. Math. Soc., 14 (2001), 843–939 (electronic).
5. K. Buzzard, F. Diamond and F. Jarvis, On Serre’s conjecture for mod $l$ Galois representations over totally real fields, Duke Math. J., 155 (2010), 105–161.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献