The Effect of Zr and Li on the Microstructure of AlMg5Si2Mn-Type Casting Alloys

Author:

Boyko ViktoriyaORCID,Mykhalenkov KostiantynORCID,Springer ArminORCID,Kessler OlafORCID

Abstract

AbstractIn the article, the authors present results of microstructural studies of Al-Mg-Si-Mn casting alloys with Zr, Li, and TiB2 additions on a broad scale. Zirconium content was set on two levels: 0.34 and 1.58 wt%, and Li was set 1.2 and 2.0 wt%. It was found that the addition of Zr shifts the eutectic melting temperature to a higher level, up to 611.3 °C at 1.6 wt% Zr. At the same time, Li addition leads to the depression of eutectic melting temperature: down to 587.2 °C at 2.0 wt% Li, what is a common effect of eutectic modification which was confirmed by means of structural examinations. The complex addition of Li and AlTi5B1 resulted in a eutectic melting temperature close to the equilibrium eutectic temperature for the Al-Mg-Si system (596.2 °C). The grain refinement effect of Zr is due to the nucleation of α-Al on the Zr(Al1−x, Six)3 phase. Crystals of this phase were detected in the grain centers of Zr-containing alloys. The Li addition does not affect α-Al grain size but changes the morphology of eutectic colonies from petal-like to fibrous. Observation of TiB2 particles inside the primary Mg2Si crystals gives direct experimental confirmation of nucleation of the primary phase on the surface of TiB2 in the alloy after adding Li and AlTi5B1. Natural aging of the alloys resulted in the formation of fine precipitates detected close to dislocations. The most apparent supposition is that the mechanism responsible for their formation is heterogeneous nucleation in the stress field of dislocations. Hardness tests showed adding 2.0 wt% of Li is very effective, increasing hardness up to 113 HV0.2 in naturally aged condition, which is nearly double that of commercial Al-Mg-Si die-casting alloy. Several effects were proposed which may synergistically contribute to the rise of hardness in Li-containing alloys, such as solid solution strengthening, formation of primary LiAlSi phase and natural aging.

Funder

Volkswagen Foundation

Universität Rostock

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3