Abstract
AbstractThe excellent abrasion resistance of high-chromium cast irons (HCCIs) is given by an optimal combination of hard eutectic and secondary carbides (SC) and a supporting matrix. The tailoring of the microstructure is performed by heat treatments (HTs), with the aim to adjust the final properties (such as hardness and abrasion resistance). In this work, the influence of chemical composition on the microstructure and hardness of HCCI_26%Cr is evaluated. An increase in the matrix hardness was detected after HTs resulting from combining precipitation of M23C6 SC during destabilization, and austenite/martensite transformation during quenching. Kinetic calculations of the destabilization process showed that M7C3 secondary carbides are the first to precipitate during heating, reaching a maximum at 850 °C. During subsequent heating up to 980 °C and holding at this temperature, they transformed completely to M23C6. According to the MatCalc simulations, further precipitation of M23C6 occurred during cooling, in the temperature range 980–750 °C. Both phenomena were related to experimental observations in samples quenched after 0-, 30-, 60- and 90-min destabilization, where M23C6 SC were detected together with very fine SC precipitated in areas close to eutectic carbides.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Metals and Alloys,Industrial and Manufacturing Engineering,Mechanics of Materials
Reference28 articles.
1. R.J. Llewellyn, S.K. Yick, K.F. Dolman, Wear 256, 592–599 (2004)
2. S.D. Carpenter, D.E.O.S. Carpenter, J.T.H. Pearce, J. Alloys Compd. 494, 245–251 (2010)
3. S.D. Carpenter, D. Carpenter, J.T.H. Pearce, Mater. Chem. Phys. 85, 32–40 (2004)
4. ASM International, in Heat Treating, vol. 4 (ASM International, OH, 1997)
5. X.H. Tang, R. Chung, D.Y. Li, B. Hinckley, K. Dolman, Wear 267, 116–121 (2009)
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献