The Impact of HIP Process and Heat Treatment on the Mechanical Behaviour of an Al–Si–Mg Alloy Component

Author:

Bogdanoff ToniORCID,Ghassemali Ehsan,Jarfors Anders E. W.,Seifeddine Salem

Abstract

AbstractThis study investigates the effect of hot isostatic pressing (HIPping) on the static and fatigue properties of sand-casting A356 aluminium alloys. HIPping is a method to improve the fatigue properties in aluminium cast material by reducing or eliminating the inner porosities. Investigation of the complex interaction between the microstructural features on mechanical properties before and after the HIPping process was examined using computed tomography and scanning electron microscopy (SEM). Castings generally contain pores and defects that have a detrimental impact on the fatigue properties. The HIPping process closes the porosities in all investigated samples with an increase in density. Without significant defects, the mechanical performance improved in the finer microstructure. However, a considerable variation in the results was found between the different conditions, whereas the coarser microstructure with larger porosities before HIPping showed remarkably reduced results. The high-cycle fatigue-tested samples showed reduced fatigue propagation zone in the coarser microstructure. Moreover, large cleavage areas containing bifilms in the fracture surfaces indicate that the healing process of porosities is inefficient. These porosities are closed but not healed, resulting in a detrimental effect on the static and dynamic properties.

Funder

Jönköping University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3