Study of Microstructure and Corrosion Behavior of Cast Zn–Al–Mg Alloys

Author:

Hammam Rania E.,Abdel-Gawad Soha A.,Moussa Mohamed E.,Shoeib Madiha,El-Hadad ShimaaORCID

Abstract

AbstractZn-based alloys have found increasing interest as orthopedic biodegradable implantable materials, hence it was the aim of this work to investigate the microstructure and corrosion behavior of Zn–0.5Al–xMg cast alloys with different Mg additions in simulated body fluid (SBF). The cast samples were prepared using a simple stir casting method and the molten alloys were poured in a cast iron mold. The SEM results showed that adding Mg greatly influenced the microstructure of the Zn-based alloys where the degree of fineness of the microstructure increased with a rise in the Mg content. Moreover, polarization measurements revealed that the Zn–0.5Al–0.6Mg alloy attained the lowest degradation rate of 0.33 mm/year as compared to the other investigated alloys which complies the requirements of ideal corrosion rates for biodegradable bone implants. This corrosion rate helps the implantable metal alloy to last in the body until healing of the bone tissue proceeds. The fine structure and uniform distribution of Aluminum oxide and MgZn2 intermetallic phases along the grain boundaries were most likely the main factors in the superior corrosion stability of the Zn–0.5Al–0.6Mg alloy in SBF. However, higher concentrations of Mg (1 wt%) lowered the corrosion resistance of the Zn–Al–Mg alloy which was attributed to the accelerated galvanic corrosion between Zn and Mg2 Zn11 phases and the inhomogeneous distribution of corrosion products on the alloy surface due to the increased grain size and the coarse structure of the Zn alloy.

Funder

Science and Technology Development Fund

Central Metallurgical Research and Development Institute

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Industrial and Manufacturing Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3