Publisher
Springer Fachmedien Wiesbaden
Reference30 articles.
1. Abdolmaleki, P., Buadu, L. D., & Naderimansh, H. (2001). Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer letters, 171(10), 183–191.
2. Battineni, G., Chintalapudi, N., Amenta, F., & Traini, E. (2020). A Comprehensive machine-learning model applied to Magnetic Resonance Imaging (MRI) to Predict Alzheimer’s Disease (AD) in older subjects. Journal of Clinical Medicine, 9(7), 2146.
3. Bien, N., Rajpurkar, P., Ball, R. L., Irvin, J., Park, A., Jones, E., & Lungren, M. P. (2018). Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Medicine, 5(11), 1–19.
4. Billot, B., Bocchetta, M., Todd, E., Dalca, A. V., Rohrer, J. D., & Iglesias, J. E. (2020). Automated segmentation of the hypothalamus and associated subunits in brain MRI. NeuroImage, 23(8), 117287.
5. Boer, R., Vrooman, H. A., Lijn, F., Vernooij, M. W., Ikram, M. A., Lugt, A., & Niessen, W. J. (2009). White matter lesion extension to automatic brain tissue segmentation on MRI. NeuroImage, 45(5), 1151–1161.