Abstract
AbstractDue to the rise in processing power, advancements in machine learning, and the availability of large text corpora online, the use of computational methods including automated content analysis has rapidly increased. Automated content analysis is applied and developed across disciplines such as computer science, linguistics, political science, economics and – increasingly – communication science. This chapter offers a theoretical and applied introduction to the method, including promises and pitfalls associated with the method.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Fachmedien Wiesbaden
Reference77 articles.
1. Barberá, P., Bodystun, A. E., Linn, S., McMahon, R., & Nagler, J. (2021). Automated text classification of news articles: A practical guide. Political Analysis, 29(1), 19–42.
2. Benoit, K. (2020). Text as data: An overview. In L. Curini & R. Franzese (Eds.), The SAGE handbook of research methods in political science and international relations (pp. 461–497). London: Sage.
3. Blei D.M., Ng A.Y., & Jordan, M.I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
4. Boczek, K., & Hase, V. (2020). Technische Innovation, theoretische Sackgasse? Chancen und Grenzen der automatisierten Inhaltsanalyse in Lehre und Forschung. In J. Schützeneder, K. Meier, & N. Springer (Eds.), Neujustierung der Journalistik/Journalismusforschung in der digitalen Gesellschaft: Proceedings zur Jahrestagung der Fachgruppe Journalistik/Journalismusforschung der Deutschen Gesellschaft für Publizistik- und Kommunikationswissenschaft 2019, Eichstätt (pp. 117–128). doi:https://doi.org/10.21241/ssoar.70828.
5. Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V., & Kalai, A (2016). Quantifying and reducing stereotypes in word embeddings. Retrieved from: https://arxiv.org/abs/1606.06121.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献