Author:
Jungherr Andreas,Posegga Oliver
Publisher
Springer Fachmedien Wiesbaden
Reference90 articles.
1. An, J., Kwak, H., Posegga, O., & Jungherr, A. (2019). Political discussions in homogeneous and cross-cutting communication spaces. In J. Pfeffer, C. Budak, Y.-R. Lin & F. Morstatter (Hrsg.), ICWSM 2019: Proceedings of the thirteenth international AAAI conference on web and social media (S. 68–79). Association for the Advancement of Artificial Intelligence (AAAI).
2. Bail, C. A., Argyle, L. P., Brown, T. W., Bumpus, J. P., Chen, H., Hunzaker, M. B. F., et al. (2018). Exposure to opposing views on social media can increase political polarization. PNAS: Proceedings of the National Academy of Sciences, 115(37), 9216–9221. https://doi.org/10.1073/pnas.1804840115
3. Barberá, P. (2015). Birds of the same feather tweet together: Bayesian ideal point estimation using Twitter data. Political Analysis, 23(1), 76–91. https://doi.org/10.1093/pan/mpu011
4. Barberá, P., Boydstun, A. E., Linn, S., McMahon, R., & Nagler, J. (2021). Automated text classification of news articles: A practical guide. Political Analysis, 29(1), 19–42. https://doi.org/10.1017/pan.2020.8
5. Baumann, F., Lorenz-Spreen, P., Sokolov, I. M., & Starnini, M. (2020). Modeling echo chambers and polarization dynamics in social networks. Physical Review Letters, 124(4), 048301. https://doi.org/10.1103/PhysRevLett.124.048301