1. Amrhein, C., Sennrich, R.: Identifying weaknesses in machine translation metrics through minimum Bayes risk decoding: A case study for COMET. In: He, Y., Ji, H., Li, S., Liu, Y., Chang, C.-H. (Hrsg.) Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 1125–1141. Association for Computational Linguistics (2022).
2. Bannerjee, S., Lavie, A.: METEOR: An automatic metric for MT evaluation with improved correlation with human judgements. In: Goldstein, J., Lavie, A., Lin, C.-Y., Voss, C. (Hrsg.): Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, 65–72. Association for Computational Linguistics (2005).
3. Bentivogli, L., Bisazza, A., Cettolo, M., Federico, M.: Neural versus phrase-based machine translation quality: A case study. In: Su, J., Duh, K., Carreras, X. (Hrsg.) Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 257–267. Association for Computational Linguistics (2016).
4. Bowker, L., Ciro, J. B.: Machine Translation and Global Research: Towards Improved Machine Translation Literacy in the Scholarly Community. Emerald Publishing, Bingley (2019).
5. Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., Stoyanov, V.: Unsupervised cross-lingual representation learning at scale. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (Hrsg.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 8440–8451. Association for Computational Linguistics (2020).