Embeddings of trees, cantor sets and solvable Baumslag–Solitar groups

Author:

Nairne Patrick S.ORCID

Abstract

AbstractWe characterise when there exists a quasiisometric embedding between two solvable Baumslag–Solitar groups. This extends the work of Farb and Mosher on quasiisometries between the same groups. More generally, we characterise when there can exist a quasiisometric embedding between two treebolic spaces. This allows us to determine when two treebolic spaces are quasiisometric, confirming a conjecture of Woess. The question of whether there exists a quasiisometric embedding between two treebolic spaces turns out to be equivalent to the question of whether there exists a bilipschitz embedding between two symbolic Cantor sets, which in turn is equivalent to the question of whether there exists a rough isometric embedding between two regular rooted trees. Hence we answer all three of these questions simultaneously. It turns out that the existence of such embeddings is completely determined by the boundedness of an intriguing family of integer sequences.

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Reference15 articles.

1. Gromov, M.: Infinite groups as geometric objects. In: Proceedings of the International Congress of Mathematicians August 16–24 1983 Warszawa, pp. 385–392. PWN - Polish Scientific Publishers (1984)

2. Gromov, M.: Groups of polynomial growth and expanding maps (with an appendix by Jacques tits). Publications Mathématiques de l’IHÉS 53, 53–78 (1981)

3. Dyubina, A.: Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups. Int. Math. Res. Not. 2000(21), 1097–1101 (2000)

4. Farb, B., Mosher, L.: A rigidity theorem for the solvable Baumslag-Solitar groups. Inventiones Mathematicae 131, 419–451 (1998)

5. Bendikov, A., Saloff-Coste, L., Salvatori, M., Woess, W.: The heat semigroup and Brownian motion on strip complexes. Adv. Math. 226, 03 (2009)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3