Author:
Lee Gye-Seon,Zhang Tengren
Abstract
AbstractWe show that if a cusped Borel Anosov representation from a lattice $$\Gamma \subset \textsf{PGL}_2({{\,\mathrm{\mathbb {R}}\,}})$$
Γ
⊂
PGL
2
(
R
)
to $$\textsf{PGL}_d({{\,\mathrm{\mathbb {R}}\,}})$$
PGL
d
(
R
)
contains a unipotent element with a single Jordan block in its image, then it is necessarily a (cusped) Hitchin representation. We also show that the amalgamation of a Hitchin representation with a cusped Borel Anosov representation that is not Hitchin is never cusped Borel Anosov.
Funder
National Research Foundation of Korea
NUS-MOE
Seoul National University
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Barbot, T.: Three-dimensional Anosov flag manifolds. Geom. Topol. 14(1), 153–191 (2010)
2. Bochi, J., Potrie, R., Sambarino, A.: Anosov representations and dominated splittings. J. Eur. Math. Soc. (JEMS) 21(11), 3343–3414 (2019)
3. Canary, R., Lee, M., Stover, M.: Amalgam Anosov representations. Geom Topol 21(1), 215–51 (2017). (With an appendix by Canary, Lee, Andrés Sambarino and Stover)
4. Canary, R., Zhang, T., Zimmer, A.: Cusped Hitchin representations and Anosov representations of geometrically finite Fuchsian groups. Adv. Math. 404, 108439 (2022)
5. Canary, R., Zhang, T., Zimmer, A.: Entropy rigidity for cusped Hitchin representations. Preprint arXiv:2201.04859 (2022)