Abstract
AbstractKoszul type Coxeter simplex tilings exist in hyperbolic n-space $$\mathbb {H}^n$$
H
n
up to $$ n = 9$$
n
=
9
, and their horoball packings achieve the highest known regular ball packing densities for $$n = 3, 4, 5$$
n
=
3
,
4
,
5
. In this paper we determine the optimal horoball packing densities of Koszul simplex tilings in dimensions $$6 \le n \le 9$$
6
≤
n
≤
9
, which give new lower bounds for optimal packing density in each dimension. The symmetries of the packings are given by Coxeter simplex groups, and a parameter related to the Busemann function gives an isometry invariant description of different optimal horoball packing configurations.
Funder
Emberi Eroforrások Minisztériuma
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Adams, C.: The noncompact hyperbolic 3-manifold of minimal volume. Proc. Am. Math. Soc. 100(4), 601–606 (1987)
2. Agol, I., Culler, M., Shalen, P.B.: Dehn surgery, homology and hyperbolic volume. Algebraic Geom. Topol. 6(5), 2297–2312 (2006)
3. Burger, M., Iozzi, A. (eds.) Rigidity in Dynamics and Geometry: Contributions from the Programme Ergodic Theory, Geometric Rigidity and Number Theory, Isaac Newton Institute for the Mathematical Sciences Cambridge, United Kingdom, 5 January–7 July 2000 Springer (2013)
4. Böröczky, K.: Packing of spheres in spaces of constant curvature. Acta Math. Acad. Sci. Hungar. 32, 243–261 (1978)
5. Böröczky, K., - Florian, A.: Über die dichteste Kugelpackung im hyperbolischen Raum,. Acta Math. Acad. Sci. Hungar. 15, 237–245 (1964)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classical Notions and Problems in Thurston Geometries;International Electronic Journal of Geometry;2023-10-29