Algebraic hull of maximal measurable cocycles of surface groups into Hermitian Lie groups

Author:

Savini A.ORCID

Abstract

AbstractFollowing the work of Burger, Iozzi and Wienhard for representations, in this paper we introduce the notion of maximal measurable cocycles of a surface group. More precisely, let $$\mathbf {G}$$ G be a semisimple algebraic $${\mathbb {R}}$$ R -group such that $$G=\mathbf {G}({\mathbb {R}})^{\circ }$$ G = G ( R ) is of Hermitian type. If $$\Gamma \le L$$ Γ L is a torsion-free lattice of a finite connected covering of $$\mathrm{PU}(1,1)$$ PU ( 1 , 1 ) , given a standard Borel probability $$\Gamma $$ Γ -space $$(\Omega ,\mu _\Omega )$$ ( Ω , μ Ω ) , we introduce the notion of Toledo invariant for a measurable cocycle $$\sigma :\Gamma \times \Omega \rightarrow G$$ σ : Γ × Ω G . The Toledo invariant remains unchanged along G-cohomology classes and its absolute value is bounded by the rank of G. This allows to define maximal measurable cocycles. We show that the algebraic hull $$\mathbf {H}$$ H of a maximal cocycle $$\sigma $$ σ is reductive and the centralizer of $$H=\mathbf {H}({\mathbb {R}})^{\circ }$$ H = H ( R ) is compact. If additionally $$\sigma $$ σ admits a boundary map, then H is of tube type and $$\sigma $$ σ is cohomologous to a cocycle stabilizing a unique maximal tube type subdomain. This result is analogous to the one obtained for representations. In the particular case $$G=\mathrm{PU}(n,1)$$ G = PU ( n , 1 ) maximality is sufficient to prove that $$\sigma $$ σ is cohomologous to a cocycle preserving a complex geodesic. We conclude with some remarks about boundary maps of maximal Zariski dense cocycles.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the trivializability of rank-one cocycles with an invariant field of projective measures;European Journal of Mathematics;2024-01-09

2. Borel invariant for measurable cocycles of 3-manifold groups;Journal of Topology and Analysis;2022-02-16

3. NATURAL MAPS FOR MEASURABLE COCYCLES OF COMPACT HYPERBOLIC MANIFOLDS;Journal of the Institute of Mathematics of Jussieu;2021-09-29

4. Multiplicative constants and maximal measurable cocycles in bounded cohomology;Ergodic Theory and Dynamical Systems;2021-08-31

5. Superrigidity of maximal measurable cocycles of complex hyperbolic lattices;Mathematische Zeitschrift;2021-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3