Abstract
AbstractThe aim of this note is to investigate the properties of the convex hull and the homothetic convex hull functions of a convex body K in Euclidean n-space, defined as the volume of the union of K and one of its translates, and the volume of K and a translate of a homothetic copy of K, respectively, as functions of the translation vector. In particular, we prove that the convex hull function of the body K does not determine K. Furthermore, we prove the equivalence of the polar projection body problem raised by Petty, and a conjecture of G.Horváth and Lángi about translative constant volume property of convex bodies. We give a short proof of some theorems of Jerónimo-Castro about the homothetic convex hull function, and prove a homothetic variant of the translative constant volume property conjecture for 3-dimensional convex polyhedra. We also apply our results to describe the properties of the illumination bodies of convex bodies.
Funder
Hungarian Scientific Research Fund
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Magyar Tudományos Akadéémia
Ministry for Innovation and Technology, Hungary
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Meyer, M., Reisner, S., Schmuckenschläger, M.: The volume of the intersection of a convex body with its translates. Mathematika 40, 278–289 (1993)
2. Matheron, G.: Le covariogramme géometrique des compacts convexes de $${\mathbb{R}}^3$$. Technical report 2/86, 54, Centre de Géostatistique, Ecole des Mines de Paris (1986)
3. Fáry, I., Rédei, L.: Der zentralsymmetrische Kern und die zentralsymmetrische Hülle von konvexen Körpern. Math. Annalen 122, 205–220 (1950)
4. Ahn, H.K., Abardia, J., Bae, S.W., Cheong, O., Dann, S., Park, D., Shin, C.S.: The minimum convex container of two convex polytopes under translations. Comput. Geom. 77, 40–50 (2019)
5. Rogers, C.A., Shephard, G.C.: Some extremal problems for convex bodies. Mathematika 5, 93–102 (1958)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献