Abstract
AbstractWe study multi-moment maps on nearly Kähler six-manifolds with a two-torus symmetry. Critical points of these maps have non-trivial stabilisers. The configuration of fixed-points and one-dimensional orbits is worked out for generic six-manifolds equipped with an $$\mathrm {SU}(3)$$
SU
(
3
)
-structure admitting a two-torus symmetry. Projecting the subspaces obtained to the orbit space yields a trivalent graph. We illustrate this result concretely on the homogeneous nearly Kähler examples.
Funder
Philipps-Universität Marburg
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Aganagic, M., Klemm, A., Mariño, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254(2), 425–478 (2005)
2. Bolton, J., Dillen, F., Dioos, B., Vrancken, L.: Almost complex surfaces in the nearly Kähler $${\mathbb{S}}^3 \times {\mathbb{S}}^3$$. Tohoku Math. J. 67(2), 1–17 (2015)
3. Bryant, R.: Metrics with exceptional holonomy. Ann. Math. 126(3), 525–576 (1987)
4. Butruille, J.-B.: Classification des variétés approximativement kähleriennes homogènes. Ann. Glob. Anal. Geom. 27(3), 201–225 (2005)
5. Carrión, R.: Some special geometries defined by lie groups. Ph.D. thesis, Oxford (1993)