Scalar curvature and the multiconformal class of a direct product Riemannian manifold

Author:

Roos SaskiaORCID,Otoba Nobuhiko

Abstract

AbstractFor a closed, connected direct product Riemannian manifold $$(M, g)=(M_1, g_1) \times \cdots \times (M_l, g_l)$$ ( M , g ) = ( M 1 , g 1 ) × × ( M l , g l ) , we define its multiconformal class $$ [\![ g ]\!]$$ [ [ g ] ] as the totality $$\{f_1^2g_1\oplus \cdots \oplus f_l^2g_l\}$$ { f 1 2 g 1 f l 2 g l } of all Riemannian metrics obtained from multiplying the metric $$g_i$$ g i of each factor $$M_i$$ M i by a positive function $$f_i$$ f i on the total space M. A multiconformal class $$ [\![ g ]\!]$$ [ [ g ] ] contains not only all warped product type deformations of g but also the whole conformal class $$[\tilde{g}]$$ [ g ~ ] of every $$\tilde{g}\in [\![ g ]\!]$$ g ~ [ [ g ] ] . In this article, we prove that $$ [\![ g ]\!]$$ [ [ g ] ] contains a metric of positive scalar curvature if and only if the conformal class of some factor $$(M_i, g_i)$$ ( M i , g i ) does, under the technical assumption $$\dim M_i\ge 2$$ dim M i 2 . We also show that, even in the case where every factor $$(M_i, g_i)$$ ( M i , g i ) has positive scalar curvature, $$ [\![ g ]\!]$$ [ [ g ] ] contains a metric of scalar curvature constantly equal to $$-1$$ - 1 and with arbitrarily large volume, provided $$l\ge 2$$ l 2 and $$\dim M\ge 3$$ dim M 3 .

Funder

Universität Potsdam

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Reference54 articles.

1. Allison, D.: Pseudoconvexity in Lorentzian doubly warped products. Geom. Dedicata 39(2), 223–227 (1991)

2. Ammann, B., Madani, F., Pilca, M.: The $$S^1$$-equivariant Yamabe invariant of 3-manifolds. Int. Math. Res. Not. IMRN 20, 6310–6328 (2017)

3. Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269–296 (1976)

4. Bérard-Bergery, L.: Scalar Curvature and Isometry Group, pp. 9–28. Kaigai Publications, Tokyo (1983)

5. Bishop, R.L.: Clairaut submersions. In: Kobayashi, S., Obata, M., Takahashi, T. (eds.) Differential Geometry (in Honor of Kentaro Yano), pp 21–31. Kinokuniya, Tokyo (1972)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3