Abstract
AbstractFano fibrations arise naturally in the birational classification of algebraic varieties. We show that these morphisms always induce a semiorthogonal decomposition on the derived category of the fibred space, extending classic results such as Orlov’s projective bundle formula to the non-flat and singular case.
Funder
Albert-Ludwigs-Universität Freiburg im Breisgau
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Auel, A., Bernardara,M.: Cycles, derived categories, and rationality. In Surveys on recent developments in algebraic geometry, volume 95 of Proc. Sympos. Pure Math., pp. 199–266. Amer. Math. Soc., Providence, RI, (2017). Preprint arXiv:1612.02415
2. Beĭlinson, A.A.: Coherent sheaves on $${ P}^{n}$$ and problems in linear algebra. Funktsional. Anal. i Prilozhen. 12(3), 68–69 (1978). https://doi.org/10.1007/BF01681436
3. Bondal, A.I.: Representations of associative algebras and coherent sheaves. Izv. Akad. Nauk SSSR Ser. Mat. 53(1), 25–44 (1989). https://doi.org/10.1070/IM1990v034n01ABEH000583
4. Flenner, H., O’Carroll, L., Vogel, W.: Joins and intersections. In: Springer Monographs in Mathematics. Springer-Verlag, Berlin (1999)
5. Grothendieck, A.: Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math., (4):228, 1960. http://www.numdam.org/item/PMIHES_1960__4__5_0