Abstract
AbstractThe Stark problem is a completely integrable system which describes the motion of an electron in a constant electric field and subject to the attraction of a proton. In this paper we show that in the planar case after Levi-Civita regularization the bounded component of the energy hypersurfaces of the Stark problem for energies below the critical value can be interpreted as boundaries of concave toric domains.
Funder
deutsche forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Choi, K., Cristofaro-Gardiner, D., Frenkel, D., Hutchings, M., Ramos, V.: Symplectic embeddings into four-dimensional concave toric domains. J. Topol. 7(4), 1054–1076 (2014)
2. Cristofaro-Gardiner, D.: Symplectic embeddings from concave toric domains into convex ones. J. Differ. Geom. 112(2), 199–232 (2019)
3. Delzant, T.: Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. France 116(3), 315–339 (1988)
4. Epstein, P.: Zur Theorie des Starkeffektes. Ann. Phys. 50, 489–520 (1916)
5. Karshon, Y., Lerman, E.: Non-compact symplectic toric manifolds. SIGMA symmetry integrability. Geom. Methods Appl. 11(055), 37 (2015)