Abstract
AbstractWe explicitly construct Brill–Noether general K3 surfaces of genus 4, 6 and 8 having the maximal number of elliptic pencils of degrees 3, 4 and 5, respectively, and study their moduli spaces and moduli maps to the moduli space of curves. As an application we prove the existence of Brill–Noether general K3 surfaces of genus 4 and 6 without stable Lazarsfeld–Mukai bundles of minimal $$c_2$$
c
2
.
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Aprodu, M., Farkas, G., Ortega, A.: Restricted Lazarsfeld-Mukai bundles and canonical curves. In Development of moduli theory—Kyoto 2013, Adv. Stud. Pure Math., vol. 69, pages 303–322. Math. Soc. Japan, [Tokyo] (2016)
2. Aprodu, M.: Lazarsfeld–Mukai bundles and applications. In Commutative algebra, pp. 1–23. Springer, New York (2013)
3. Arbarello, E., Cornalba, M.: Footnotes to a paper of Beniamino Segre, The number of $$g^{1}_{d}$$’s on a general $$d$$-gonal curve, and the unirationality of the Hurwitz spaces of $$4$$-gonal and $$5$$-gonal curves. Math. Ann. 256(3), 341–362 (1981)
4. Arbarello, E., Cornalba, M., Griffiths, P.A., Joseph, Harris: Geometry of algebraic curves Vol I, Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer, New York (1985)
5. Artebani, M., Kondō, S.: The moduli of curves of genus six and $$K3$$ surfaces. Trans. Am. Math. Soc. 363(3), 1445–1462 (2011)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献