Author:
Fuller E. J.,Vemuri M. K.
Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. Abrams, A., Cantarella, J., Fu, J.H.G., Ghomi, M., Howard, R.: Circles minimize most knot energies. Topology 42(2), 381–394 (2003)
2. Auckly, D., Sadun, L.: A Family of Möbius Invariant 2-Knot Energies. Geometric Topology (Athens, GA, 1993); AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc. Providence, RI, 1997, pp 235–258
3. Brylinski, J.L.: The beta function of a knot. Int. J. Math. 10(4), 415–423 (1999)
4. Freedman, M.H., He, Z.X., Wang, Z.: Möbius energy of knots and unknots. Ann. Math. (2) 139(1), 1–50 (1994)
5. Funaba, H., O’Hara, J.: Möbius invariant energy of tori of revolution. J. Phys.: Conf. Ser. 544 (2014)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Brylinski beta function of a double layer;Differential Geometry and its Applications;2024-02
2. Residues of Manifolds;The Journal of Geometric Analysis;2023-09-02
3. Self‐repulsiveness of energies for closed submanifolds;Mathematische Nachrichten;2022-11-14
4. Characterization of balls by generalized Riesz energy;Mathematische Nachrichten;2018-08-27
5. Regularized Riesz energies of submanifolds;Mathematische Nachrichten;2018-03-08