Abstract
AbstractA result of I.V. Dolgachev states that the complex homaloidal polynomials in three variables, i.e. the complex homogeneous polynomials whose polar map is birational, are of degree at most three. In this note we describe homaloidal polynomials in three variables of arbitrarily large degree in positive characteristic. Using combinatorial arguments, we also classify line arrangements whose polar map is homaloidal in positive characteristic.
Funder
Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Bignalet-Cazalet, R.: Torsion of a finite base locus. arXiv:1806.00856, 2018
2. Busé, L., Cid-Ruiz, Y., Simis, A.: Degree and birationality of multi-graded rational maps. Proc. London Math. Soc. 121(4), 743–787 (2020)
3. Beutelspacher, A.: Chapter 4 - projective planes. In F. Buekenhout, editor, Handbook of Incidence Geometry, pp. 107–136. North-Holland, 1995
4. de Bruijn, N.G., Erdös, P.: On a combinatorial problem. Proc. Sect. Sci. Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam 51(10), 1277–1279 (1948)
5. Dória, A.V., Hassanzadeh, S.H., Simis, A.: A characteristic free criterion of birationality. Adv. Math. 230, 390–413 (2012)