Abstract
AbstractGiven a couple of subspaces $${\mathcal {Y}}\subset {\mathcal {X}}$$
Y
⊂
X
of the complex plane $${\mathbb {C}}$$
C
satisfying some mild conditions (a “nice couple”), and given a PMQ-pair $$({\mathcal {Q}},G)$$
(
Q
,
G
)
, consisting of a partially multiplicative quandle (PMQ) $${\mathcal {Q}}$$
Q
and a group G, we introduce a “Hurwitz–Ran” space $$\text {Hur}({\mathcal {X}},{\mathcal {Y}};{\mathcal {Q}},G)$$
Hur
(
X
,
Y
;
Q
,
G
)
, containing configurations of points in $${\mathcal {X}}\setminus {\mathcal {Y}}$$
X
\
Y
and in $${\mathcal {Y}}$$
Y
with monodromies in $${\mathcal {Q}}$$
Q
and in G, respectively. We further introduce a notion of morphisms between nice couples, and prove that Hurwitz–Ran spaces are functorial both in the nice couple and in the PMQ-group pair. For a locally finite PMQ $${\mathcal {Q}}$$
Q
we prove a homeomorphism between $$\text {Hur} ((0,1)^2;{\mathcal {Q}}_+)$$
Hur
(
(
0
,
1
)
2
;
Q
+
)
and the simplicial Hurwitz space $$\text {Hur} ^{\Delta }({\mathcal {Q}})$$
Hur
Δ
(
Q
)
, introduced in previous work of the author: this provides in particular $$\text {Hur} ((0,1)^2;{\mathcal {Q}}_+)$$
Hur
(
(
0
,
1
)
2
;
Q
+
)
with a cell stratification in the spirit of Fox–Neuwirth and Fuchs.
Funder
Royal Library, Copenhagen University Library
Publisher
Springer Science and Business Media LLC
Reference9 articles.
1. Beilinson, A., Drinfeld, V.: Chiral Algebras, vol. 51 of Colloquium Publications. AMS (2004)
2. Bianchi, A.: Moduli spaces of branched coverings of the plane. Ph.D. thesis, Universität Bonn, (2020). https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/8434
3. Bianchi, A.: Partially multiplicative quandles and simplicial Hurwitz spaces (2021). arXiv:2106.09425
4. Bianchi, A.: Deloopings of Hurwitz spaces (2021). arXiv:2107.13081
5. Bianchi, A.: Moduli spaces of Riemann surfaces as Hurwitz spaces (2021). To appear in Advances in Mathematics. arXiv:2112.10864
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deloopings of Hurwitz spaces;Compositio Mathematica;2024-07