Author:
Hamenstädt Ursula,Jäckel Frieder
Abstract
AbstractGeometric structures on a manifold M arise from a covering of M by charts with values in a homogeneous space G/H, with chart transitions restrictions of elements of G. If M is aspherical, then such geometric structures are given by a homomorphism of the fundamental group of M into G. Rigidity of such structures means that the conjugacy class of the homomorphism can be reconstructed from topological or geometric information on M. We give an overview of such rigidity results, focusing on topological type and length functions.
Funder
Schwerpunktprogramm Geometry at Infinity of the DFG
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Agol, I.: Tameness of hyperbolic 3-manifolds. arXiv:math/0405568, (2004)
2. Barthels, A., Lück, W.: The Borel Conjecture for hyperbolic and CAT(0)-groups. Ann. Math. 175(2), 631–689 (2012)
3. Besson, G., Courtois, G., Gallot, S.: Entrop ies et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Funct. Anal. 5, 731–799 (1995)
4. Benoist, Y.: Convexes hyperboliques et fonctions quasisymétriques. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 97, 181–237 (2003)
5. Benoist, Y.: Convexes divisibles I. Tata Inst. Fundam. Res. Stud. Math. 17, 339–374 (2004)