AI-driven lightweight real-time SDR sensing system for anomalous respiration identification using ensemble learning

Author:

Saeed UmerORCID,Abbasi Qammer H.,Shah Syed Aziz

Abstract

AbstractIn less than three years, more than six million fatalities have been reported worldwide due to the coronavirus pandemic. COVID-19 has been contained within a broad range due to restrictions and effective vaccinations. However, there is a greater risk of pandemics in the future, which can cause similar circumstances as the coronavirus. One of the most serious symptoms of coronavirus is rapid respiration decline that can lead to mortality in a short period. This situation, along with other respiratory conditions such as asthma and pneumonia, can be fatal. Such a condition requires a reliable, intelligent, and secure system that is not only contactless but also lightweight to be executed in real-time. Wireless sensing technology is the ultimate solution for modern healthcare systems as it eliminates close interactions with infected individuals. In this paper, a lightweight real-time solution for anomalous respiration identification is provided using the radio-frequency sensing device USRP and the ensemble learning approach extra-trees. A wireless software-defined radio platform is used to acquire human respiration data based on the change in the channel state information. To improve the performance of the trained models, the respiration data is utilised to produce large simulated data sets using the curve fitting technique. The final data set consists of eight distinct types of respiration: eupnea, bradypnea, tachypnea, sighing, biot, Cheyne-stokes, Kussmaul, and central sleep apnea. The ensemble learning approach: extra-trees are trained, validated, and tested. The results showed that the proposed platform is lightweight and highly accurate in identifying several respirations in a static setting.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3