1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/
2. Adib, F., Katabi, D.: See through walls with wifi!. SIGCOMM Comput. Commun. Rev. 43(4), 75–86 (2013). https://doi.org/10.1145/2534169.2486039
3. Adib, F., Kabelac, Z., Katabi, D., Miller, R.C.: 3d tracking via body radio reflections. In: Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, NSDI’14, pp. 317–329. USENIX Association, Berkeley (2014). http://dl.acm.org/citation.cfm?id=2616448.2616478
4. Al-Qaness, M.A.A., Al-Eryani, Y., Al-Jallad, N.: Indoor human activity recognition method using CSI of wireless signals. In: International Symposium on Computer Science and Artificial Intelligence (ISCSAI), vol. 1, no. 3, pp. 49–51 (2017). https://intelcomp-design.com/Archives/ISCSAI%20ISSUE3/ISCSAI019.pdf
5. Al-Qaness, M.A.A., Li, F., Ma, X., Zhang, Y., Liu, G.: Device-free indoor activity recognition system. Appl. Sci. 6(11) (2016). https://doi.org/10.3390/app6110329. http://www.mdpi.com/2076-3417/6/11/329