Abstract
AbstractMaritime vessel re-identification (re-ID) is a computer vision task of vessel identity matching across disjoint camera views. Prominent applications of vessel re-ID exist in the fields of surveillance and maritime traffic flow analysis. However, the field suffers from the absence of a large-scale dataset that enables training of deep learning models. In this study, we present a new dataset that includes 4614 images of 729 vessels along with 5-bin orientation and 8-class vessel-type annotations to promote further research. A second contribution of this study is the baseline re-ID analysis of our new dataset. Performances of 10 recent deep learning architectures are quantitatively compared to reveal the best practices. Lastly, we propose a novel multi-branch deep learning architecture, Maritime Vessel Re-ID network (MVR-net), to address the challenging problem of vessel re-ID. Evaluation of our approach on the new dataset yields 74.5% mAP and 77.9% Rank-1 score, providing a performance increase of 5.7% mAP and 5.0% Rank-1 over the best-performing baseline. MVR-net also outperforms the PRN (a pioneering vehicle re-ID network), by 2.9% and 4.3% higher mAP and Rank-1, respectively.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Reference40 articles.
1. Atkinson, M.P., Kress, M., Szechtman, R.: Maritime transportation of illegal drugs from south america. Int. J. Drug Policy 39, 43–51 (2017)
2. Bazzani, L., Cristani, M., Murino, V.: Symmetry-driven accumulation of local features for human characterization and re-identification. Comput. Vis. Image Underst. 117(2), 130–144 (2013)
3. Bedagkar-Gala, A., Shah, S.K.: A survey of approaches and trends in person re-identification. Image Vis. Comput. 32(4), 270–286 (2014)
4. Chen, H., Lagadec, B., Bremond, F.: Partition and reunion: a two-branch neural network for vehicle re-identification. In: Proceedings of the CVPR Workshops, pp. 184–192 (2019)
5. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2017)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献