Author:
Yang Jianhua,Wang Ke,Li Ruifeng
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Reference39 articles.
1. Chao,Y.W., Vijayanarasimhan, S., Seybold, B., Ross, D.A., Deng, J., Sukthankar, R.: Rethinking the faster r-cnn architecture for temporal action localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1130–1139 (2018)
2. Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., Lu, H.: Skeleton-based action recognition with shift graph convolutional network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 183–192 (2020)
3. Cui, R., Zhu, A., Jingran, W., Hua, G.: Skeleton-based attention-aware spatial-temporal model for action detection and recognition. IET Comput. Vis. 14(5), 177–184 (2020)
4. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1110–1118 (2015)
5. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)