Neuro-augmented vision for evolutionary robotics

Author:

Watt Nathan,du Plessis Mathys C.ORCID

Abstract

AbstractThis paper presents neuro-augmented vision for evolutionary robotics (NAVER), which aims to address the two biggest challenges in camera-equipped robot evolutionary controllers. The first challenge is that camera images typically require many inputs from the controller, which greatly increases the complexity of optimising the search space. The second challenge is that evolutionary controllers often cannot bridge the reality gap between simulation and the real world. This method utilises a variational autoencoder to compress the camera image into smaller input vectors that are easier to manage, while still retaining the relevant information of the original image. Automatic encoders are also used to remove unnecessary details from real-world images, in order to better align with images generated by simple visual simulators. NAVER is used to evolve the controller of a robot, which only uses camera inputs to navigate the maze based on visual cues and avoid collisions. The experimental results indicate that the controller evolved in simulation and transferred to the physical robot, where it successfully performed the same navigation task. The controller can navigate the maze using only visual information. The controller responds to visual cues and changes its behaviour accordingly. NAVER has shown great potential as it has successfully completed (so far) the most complex vision-based task controller in evolutionary robotics literature.

Funder

National Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3