Depth estimation from a single SEM image using pixel-wise fine-tuning with multimodal data

Author:

Houben TimORCID,Huisman Thomas,Pisarenco MaximORCID,van der Sommen FonsORCID,de With Peter H. N.ORCID

Abstract

AbstractTo support the ongoing size reduction in integrated circuits, the need for accurate depth measurements of on-chip structures becomes increasingly important. Unfortunately, present metrology tools do not offer a practical solution. In the semiconductor industry, critical dimension scanning electron microscopes (CD-SEMs) are predominantly used for 2D imaging at a local scale. The main objective of this work is to investigate whether sufficient 3D information is present in a single SEM image for accurate surface reconstruction of the device topology. In this work, we present a method that is able to produce depth maps from synthetic and experimental SEM images. We demonstrate that the proposed neural network architecture, together with a tailored training procedure, leads to accurate depth predictions. The training procedure includes a weakly supervised domain adaptation step, which is further referred to as pixel-wise fine-tuning. This step employs scatterometry data to address the ground-truth scarcity problem. We have tested this method first on a synthetic contact hole dataset, where a mean relative error smaller than 6.2% is achieved at realistic noise levels. Additionally, it is shown that this method is well suited for other important semiconductor metrics, such as top critical dimension (CD), bottom CD and sidewall angle. To the extent of our knowledge, we are the first to achieve accurate depth estimation results on real experimental data, by combining data from SEM and scatterometry measurements. An experiment on a dense line space dataset yields a mean relative error smaller than 1%.

Funder

Technische Universiteit Eindhoven

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DeepSEM-Net: Enhancing SEM defect analysis in semiconductor manufacturing with a dual-branch CNN-Transformer architecture;Computers & Industrial Engineering;2024-07

2. Integrating NIR Hyperspectral Techniques with Neural Network for Barley Seeds Classification;2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES);2024-05-03

3. Robust semantic segmentation method of urban scenes in snowy environment;Machine Vision and Applications;2024-04-29

4. Method to reconstruct three-dimensional profile based on top-view SEM images;Journal of Vacuum Science & Technology B;2024-04-17

5. Proceedings of the Workshop on 3D Geometry Generation for Scientific Computing;2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW);2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3