Abstract
AbstractTo support the ongoing size reduction in integrated circuits, the need for accurate depth measurements of on-chip structures becomes increasingly important. Unfortunately, present metrology tools do not offer a practical solution. In the semiconductor industry, critical dimension scanning electron microscopes (CD-SEMs) are predominantly used for 2D imaging at a local scale. The main objective of this work is to investigate whether sufficient 3D information is present in a single SEM image for accurate surface reconstruction of the device topology. In this work, we present a method that is able to produce depth maps from synthetic and experimental SEM images. We demonstrate that the proposed neural network architecture, together with a tailored training procedure, leads to accurate depth predictions. The training procedure includes a weakly supervised domain adaptation step, which is further referred to as pixel-wise fine-tuning. This step employs scatterometry data to address the ground-truth scarcity problem. We have tested this method first on a synthetic contact hole dataset, where a mean relative error smaller than 6.2% is achieved at realistic noise levels. Additionally, it is shown that this method is well suited for other important semiconductor metrics, such as top critical dimension (CD), bottom CD and sidewall angle. To the extent of our knowledge, we are the first to achieve accurate depth estimation results on real experimental data, by combining data from SEM and scatterometry measurements. An experiment on a dense line space dataset yields a mean relative error smaller than 1%.
Funder
Technische Universiteit Eindhoven
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Reference51 articles.
1. Bunday, B., Solecky, E., Vaid, A., Bello, A.F., Dai, X.: Metrology capabilities and needs for 7 nm and 5 nm logic nodes. In: Metrology, Inspection, and Process Control for Microlithography XXXI, vol. 10145, p. 101450 (2017). https://doi.org/10.1117/12.2260870
2. Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. In: Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001), pp. 131–140 (2001)
3. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34, 705–724 (2013)
4. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth prediction (2019)
5. Stoyanov, D., Scarzanella, M.V., Pratt, P., Yang, G.-Z.: Real-time stereo reconstruction in robotically assisted minimally invasive surgery. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2010, pp. 275–282 (2010)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献