Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Reference38 articles.
1. Xu, M., Yu, X., Chen, D., Wu, C., Jiang, Y.: An efficient anomaly detection system for crowded scenes using variational autoencoders. Appl. Sci. 9(16), 33–37 (2019)
2. Sabokrou, M., Fayyaz, M., Fathy, M., Moayed, Z., Klette, R.: Deep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenes. Comput. Vis. Image Underst. 172, 88–97 (2018)
3. Roshtkhari, M.J., Levine, M.D.: An on-line, real-time learning method for detecting anomalies in videos using spatio-temporal compositions. Comput. Vis. Image Underst. 117(10), 1436–1452 (2013)
4. Aldissi, B., Ammar, H.: Real-time frequency-based detection of a panic behavior in human crowds. Multimed. Tools Appl. 79(33), 24581–24871 (2020)
5. Shehab, D., Ammar, H.: Statistical detection of a panic behavior in crowded scenes. Mach. Vis. Appl. 30(5), 919–931 (2019)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献