Hierarchical contrastive adaptation for cross-domain object detection
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Link
https://link.springer.com/content/pdf/10.1007/s00138-022-01317-7.pdf
Reference64 articles.
1. Arun, A., Jawahar, C., Kumar, M.: Dissimilarity coefficient based weakly supervised object detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 9424–9433 (2019)
2. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. (2019) arXiv:1906.00910
3. Benenson, R., Popov, S., Ferrari, V.: Large-scale interactive object segmentation with human annotators. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 11692–11701 (2019)
4. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 95–104 (2017)
5. Cai, Q., Pan, Y., Ngo, C., Tian, X., Duan, L., Yao, T.: Exploring object relation in mean teacher for cross-domain detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 11449–11458 (2019)
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unsupervised Domain Adaptation With Debiased Contrastive Learning and Support-Set Guided Pseudolabeling for Remote Sensing Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024
2. Domain Adaptation With Contrastive Learning for Object Detection in Satellite Imagery;IEEE Transactions on Geoscience and Remote Sensing;2024
3. Unsupervised Domain Adaptation for Cross-Scene Multispectral Point Cloud Classification;IEEE Transactions on Geoscience and Remote Sensing;2024
4. Task-Specific Heterogeneous Network for Object Detection in Aerial Images;IEEE Transactions on Geoscience and Remote Sensing;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3