Abstract
AbstractAlthough in recent years we have witnessed an explosion of the scientific research in the recognition of facial soft biometrics such as gender, age and expression with deep neural networks, the recognition of ethnicity has not received the same attention from the scientific community. The growth of this field is hindered by two related factors: on the one hand, the absence of a dataset sufficiently large and representative does not allow an effective training of convolutional neural networks for the recognition of ethnicity; on the other hand, the collection of new ethnicity datasets is far from simple and must be carried out manually by humans trained to recognize the basic ethnicity groups using the somatic facial features. To fill this gap in the facial soft biometrics analysis, we propose the VGGFace2 Mivia Ethnicity Recognition (VMER) dataset, composed by more than 3,000,000 face images annotated with 4 ethnicity categories, namely African American, East Asian, Caucasian Latin and Asian Indian. The final annotations are obtained with a protocol which requires the opinion of three people belonging to different ethnicities, in order to avoid the bias introduced by the well-known other race effect. In addition, we carry out a comprehensive performance analysis of popular deep network architectures, namely VGG-16, VGG-Face, ResNet-50 and MobileNet v2. Finally, we perform a cross-dataset evaluation to demonstrate that the deep network architectures trained with VMER generalize on different test sets better than the same models trained on the largest ethnicity dataset available so far. The ethnicity labels of the VMER dataset and the code used for the experiments are available upon request at https://mivia.unisa.it.
Funder
Università degli Studi di Salerno
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Reference49 articles.
1. Ahmed, A., Yu, K., Xu, W., Gong, Y., Xing, E.: Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks. In: European Conference on Computer Vision, pp. 69–82. Springer (2008)
2. Anwar, I., Islam, N.U.: Learned features are better for ethnicity classification. Cybern. Inf. Technol. 17(3), 152–164 (2017)
3. Azzopardi, G., Greco, A., Saggese, A., Vento, M.: Fusion of domain-specific and trainable features for gender recognition from face images. IEEE Access 6, 24171–24183 (2018)
4. Bastanfard, A., Nik, M.A., Dehshibi, M.M.: Iranian face database with age, pose and expression. Machine Vision pp. 50–55 (2007)
5. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: a dataset for recognising faces across pose and age. In: IEEE International Conference on Automatic Face & Gesture Recognition, pp. 67–74. IEEE (2018)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献