LS-Net: fast single-shot line-segment detector

Author:

Nguyen Van NhanORCID,Jenssen Robert,Roverso Davide

Abstract

AbstractIn unmanned aerial vehicle (UAV) flights, power lines are considered as one of the most threatening hazards and one of the most difficult obstacles to avoid. In recent years, many vision-based techniques have been proposed to detect power lines to facilitate self-driving UAVs and automatic obstacle avoidance. However, most of the proposed methods are typically based on a common three-step approach: (i) edge detection, (ii) the Hough transform, and (iii) spurious line elimination based on power line constrains. These approaches not only are slow and inaccurate but also require a huge amount of effort in post-processing to distinguish between power lines and spurious lines. In this paper, we introduce LS-Net, a fast single-shot line-segment detector, and apply it to power line detection. The LS-Net is by design fully convolutional, and it consists of three modules: (i) a fully convolutional feature extractor, (ii) a classifier, and (iii) a line segment regressor. Due to the unavailability of large datasets with annotations of power lines, we render synthetic images of power lines using the physically based rendering approach and propose a series of effective data augmentation techniques to generate more training data. With a customized version of the VGG-16 network as the backbone, the proposed approach outperforms existing state-of-the-art approaches. In addition, the LS-Net can detect power lines in near real time. This suggests that our proposed approach has a promising role in automatic obstacle avoidance and as a valuable component of self-driving UAVs, especially for automatic autonomous power line inspection.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software

Reference46 articles.

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine learning. In: 12th $$\{$$USENIX$$\}$$ Symposium on Operating Systems Design and Implementation ($$\{$$OSDI$$\}$$ 16), pp. 265–283 (2016)

2. Barchyn, T.E., Hugenholtz, C.H., Myshak, S., Bauer, J.: A UAV-based system for detecting natural gas leaks. J. Unmanned Veh. Syst. 6(1), 18–30 (2017)

3. Boyat, A.K., Joshi, B.K.: A review paper: noise models in digital image processing. Sig. Image Process. 6(2), 63 (2015)

4. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

5. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3