Impacts of combined temperature and salinity stress on the endemic Arctic brown seaweed Laminaria solidungula J. Agardh

Author:

Diehl NoraORCID,Karsten UlfORCID,Bischof KaiORCID

Abstract

AbstractMacroalgae such as kelp are important ecosystem engineers in the Polar Regions and potentially affected by freshening and ocean warming. The endemic Arctic kelp Laminaria solidungula might be particularly imperiled and become locally extinct from Arctic fjord systems in the future, since temperature increase is most pronounced in the Polar Regions. Additionally, increased temperatures cause glacier and sea ice melting and enhancing terrestrial run-off from snowfields, which eventually can result in hyposaline conditions in fjord systems. We conducted a multiple-stressor experiment at four temperatures (0, 5, 10, 15 °C) and two salinities (SA 25, 35) to investigate the combined effects of increasing temperature and decreasing salinities on the physiological and biochemical status of young L. solidungula sporophytes. Both drivers had significant and interacting impacts, either in an additive or antagonistic way, dependent on the respective response variable. The maximum quantum yield of photosystem II (Fv/Fm) significantly declined with temperature increase and low salinity. Even though the absolute pigment content was not affected, the deepoxydation state of the xanthophyll cycle increased with intensified stress. Higher temperatures affected the C:N ratio significantly, mainly due to reduced nitrogen uptake, while SA 25 supported the nitrogen uptake, resulting in an attenuation of the effect. The concentration of mannitol decreased at SA 25. At control SA 35 mannitol level remained steady between 0 and 10 °C but significantly decreased at 15 °C. Conclusively, our results show that L. solidungula is very susceptible to both drivers of climate change, especially when they are combined. Implications to species ecology are discussed.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3