Sex identification from distinctive gene expression patterns in Antarctic krill (Euphausia superba)

Author:

Suter LeonieORCID,Polanowski Andrea Maree,King Robert,Romualdi Chiara,Sales Gabriele,Kawaguchi So,Jarman Simon Neil,Deagle Bruce Emerson

Abstract

Abstract Antarctic krill (Euphausia superba) is a highly abundant keystone species of the Southern Ocean ecosystem, directly connecting primary producers to high-trophic level predators. Sex ratios of krill vary remarkably between swarms and this phenomenon is poorly understood, as identification of krill sex relies on external morphological differences that appear late during development. Sex determination mechanisms in krill are unknown, but could include genetic, environmental or parasitic mechanisms. Similarly, virtually nothing is known about molecular sex differentiation. The krill genome has to date not been sequenced, and due to its enormous size and large amount of repetitive elements, it is currently not feasible to develop sex-specific DNA markers. To produce a reliable molecular marker for sex in krill and to investigate molecular sex differentiation we therefore focused on identifying sex-specific transcriptomic differences. Through transcriptomic analysis, we found large gene expression differences between testes and ovaries and identified three genes exclusively expressed in female whole krill from early juvenile stages onwards. The sex-specific expression of these three genes persisted through sexual regression, although our regressed samples originated from a krill aquarium and may differ from wild-regressed krill. Two slightly male-biased genes did not display sufficient expression differences to clearly differentiate sexes. Based on the expression of the three female-specific genes we developed a molecular test that for the first time allows the unambiguous sex determination of krill samples lacking external sex-specific features from juvenile stages onwards, including the sexually regressed krill we examined.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Australian Antarctic Division

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3