Drone-based monitoring and geomorphology of southern giant petrel nests near Palmer Station, western Antarctic Peninsula

Author:

Larsen Gregory D.ORCID,Varga Hanna F.,Patterson-Fraser Donna L.,Johnston David W.,Cimino Megan A.

Abstract

AbstractHuman activities and climate change threaten seabirds globally, and many species are declining from already small breeding populations. Monitoring of breeding colonies can identify population trends and important conservation concerns, but it is a persistent challenge to achieve adequate coverage of remote and sensitive breeding sites. Southern giant petrels (Macronectes giganteus) exemplify this challenge: as polar, pelagic marine predators they are subject to a variety of anthropogenic threats, but they often breed in remote colonies that are highly sensitive to disturbance. Aerial remote sensing can overcome some of these difficulties to census breeding sites and explore how local environmental factors influence important characteristics such as nest-site selection and chick survival. To this end, we used drone photography to map giant petrel nests, repeatedly evaluate chick survival and quantify-associated physical and biological characteristics of the landscape at two neighboring breeding sites on Humble Island and Elephant Rocks, along the western Antarctic Peninsula in January–March 2020. Nest sites occurred in areas with relatively high elevations, gentle slopes, and high wind exposure, and statistical models predicted suitable nest-site locations based on local spatial characteristics, explaining 72.8% of deviance at these sites. These findings demonstrate the efficacy of drones as a tool to identify, map, and monitor seabird nests, and to quantify important habitat associations that may constitute species preferences or sensitivities. These may, in turn, contextualize some of the diverse population trajectories observed for this species throughout the changing Antarctic environment.

Funder

National Science Foundation

Duke University

Wake Forest University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3