Nutrient Accumulation in Silver Birch (Betula pendula Roth) Biomass in a Lignite Mining Area

Author:

Rustowska BeataORCID,Jonczak Jerzy,Pędziwiatr Artur

Abstract

AbstractThe influence of lignite mining on vegetation constitutes a key issue due to the role of plants in restoring and maintaining the ecological balance of ecosystems. In this context, the identification of its impact on the functioning of silver birch (Betula pendula Roth) as a species often colonizing disturbed habitats takes on particular importance. Therefore, we aimed to determine the changes in nutrient content in silver birch overgrowing a spoil heap and in the vicinity of a fly ash settling pond and power plant. For this purpose, plant tissues (fine and coarse roots, stemwood, bark, coarse and fine branches, leaves) and soil samples (0–10, 10–20, 20–40, 20–40 cm deep) were examined. The basic soil characteristics were determined, along with the N, P, K, Ca, Mg, S, Fe, Mn, Cu, and Zn contents of the soil and plant samples. The soils varied in terms of soil pH and were poor in total organic carbon and other elements. The plant nutrient content varied strongly across the analyzed tissues, with the leaves usually containing the most and the stemwood the least nutrients. Statistical analysis indicated significant differences between the control vs spoil heap (particularly in Mn, S, and Mg) and the stand close to the settling pond (particularly in Ca, Mn, P, K, and S). We found that the chemical properties of the spoil heap and fly ash originating from the lignite mining operations are likely factors influencing nutrient accumulation in silver birch trees.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3