Publisher
Springer Science and Business Media LLC
Subject
Pollution,Water Science and Technology,Ecological Modelling,Environmental Chemistry,Environmental Engineering
Reference145 articles.
1. Aguilera, P. A., Fernández, A., Ropero, R. F., & Molina, L. (2013). Groundwater quality assessment using data clustering based on hybrid Bayesian networks. Stochastic Environmental Research and Risk Assessment, 27(2), 435–447. https://doi.org/10.1007/s00477-012-0676-8
2. Ahmed, A., Masrur, A., & Shah, S. M. A. (2017). Application of adaptive Neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River. Journal of King Saud University - Engineering Sciences, 29(3), 237–243. https://doi.org/10.1016/j.jksues.2015.02.001
3. Alagha, J. S., Said, M. A. M., & Mogheir, Y. (2014). Modeling of nitrate concentration in groundwater using artificial intelligence approach-a case study of Gaza coastal aquifer. Environmental Monitoring and Assessment, 186(1), 35–45. https://doi.org/10.1007/s10661-013-3353-6
4. Alizamir, M., & Sobhanardakani, S. (2016). Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach. J Adv Environ Health Res, 4(42), 68–77.
5. Alizamir, M., & Sobhanardakani, S. (2018). An artificial neural network - particle swarm optimization (ANN- PSO) approach to predict heavy metals contamination in groundwater resources. Jundishapur Journal of Health Sciences, 10(2). https://doi.org/10.5812/jjhs.67544
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献