Discard Coal as Filter Bed Material in Horizontal Subsurface Flow Constructed Wetlands: a Preliminary Study

Author:

Tebitendwa Sylvie Muwanga,Cowan Ashton KeithORCID

Abstract

AbstractConstructed wetlands (CWs) are engineered systems that use the natural functions of vegetation, substrate and microorganisms to treat wastewater. In coal mining regions, low calorific coals are dumped as discard. Left unattended, discard and slurry ponds contaminate surface and groundwater, cause erosion and sedimentation of particulates into nearby rivers and dams and contribute to atmospheric pollution and landslides. This study sought to investigate the use of South African bituminous discard as filter bed material for CW. A laboratory-scale horizontal subsurface flow (HSF) CW was supplied either nutrient-poor tap water (TW) or nutrient-rich advanced facultative pond (AFP) effluent, and quality of the treated water monitored over 6 months. Additionally, residual material from the discard coal filter bed was assayed after 6 months to establish substrate stability and to assess the contribution of phyto-biodegradation. Results showed successful establishment of P. australis on discard coal, better plant performance (measured as PSII quantum yield and biomass accumulation) and greater nutrient removal when fed AFP effluent. Discard coal filter bed material had greater ash content, sustained fixed carbon and C/N ratio with unchanged electrical conductivity (EC) and sulphate and phosphate concentration, indicative of balanced ion exchange. This, along with a > 70% reduction in NH4+-N concentration, yielded a final effluent within the general limit set by the South African authority for either irrigation or discharge, into a water resource that is not a listed water resource, for volumes up to 2000 m3 on any given day.

Funder

Rhodes University

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Water Science and Technology,Ecological Modeling,Environmental Chemistry,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3